
C basics
Lecture 02.01



C is a language for fast small 
programs
• It is used where speed, space, and portability are important

• Where?

• Most operating systems are written in C.

• Most other computer languages are written in C 

• Most games are written in C

• It creates code which is much closer to the language that 
machine can understand What language 

machines can 
understand?



To write a working C program you 
need
• Operating system (we develop for Linux)

• Text editor (choose your favorite, but vi is always awailable)

• Compiler (we use gcc)

• All this is available on the src-code server



The way C works

#include <stdio.h>
int main() {

puts("C Rocks!");
return 0;

}

Text file rocks.c

gcc rocks.c –o rocks

Compiler Machine code

Human-readable code Run through a compiler, 
which translates C code 
into machine code

Executable rocks is a 
program that computer 
can understand 



Anatomy of a complete C program
/*

* Program to calculate the number of cards in the shoe.

* This code is released under the Vegas Public License. */

#include <stdio.h>

int main()  {

int decks;

puts("Enter a number of decks");

scanf("%i", &decks);

if (decks < 1) {

puts("That is not a valid number of decks");

return 1;

}

printf("There are %i cards\n", (decks * 52));

return 0;

}

Comments: explain 
what program does



Anatomy of a complete C program
/*

* Program to calculate the number of cards in the shoe.

* This code is released under the Vegas Public License. */

#include <stdio.h>

int main()  {

int decks;

puts("Enter a number of decks");

scanf("%i", &decks);

if (decks < 1) {

puts("That is not a valid number of decks");

return 1;

}

printf("There are %i cards\n", (decks * 52));

return 0;

}

Here you tell the compiler 
to include code from 
other libraries. 
The stdio library contains 
code for reading and 
writing data from and to 
the terminal.



Anatomy of a complete C program
/*

* Program to calculate the number of cards in the shoe.

* This code is released under the Vegas Public License. */

#include <stdio.h>

int main()  {

int decks;

puts("Enter a number of decks");

scanf("%i", &decks);

if (decks < 1) {

puts("That is not a valid number of decks");

return 1;

}

printf("There are %i cards\n", (decks * 52));

return 0;

}

C code consists of 
functions.

The main function is a 
starting point of any 
program.
It is expected to return 
an integer: 
• 0 on success 
• anything else on error



Compile && run

• The GNU Compiler Collection (gcc):

• Compiles for many operating systems

• Produces machine code for many hardware 
configurations

• Compiles lots of languages other than C

• Completely free

gcc rocks.c -o rocks && ./rocks



C syntax

• Compact

• Simple

• Modular

• Influenced many other languages, including the most 
popular Java and JavaScript



Recap: Conditionals

if (fuel > 3)

puts("It's OK. You can drive downtown.\n");

else

if (money > 10)

puts("You should buy some gas.\n");

else

puts("Sorry. Better stay at home.\n");



Recap: Conditionals

if (fuel > 3)

puts("It's OK. You can drive downtown.\n");

drive("downtown");

else

if (money > 10) 

puts("You should buy some gas.\n");

buy_gas(money);

else

puts("Sorry. Better stay at home.\n")

Does the 
program 
compile?



Recap: Conditionals

if (fuel > 3)

puts("It's OK. You can drive downtown.\n");

drive("downtown");

if (fuel == 0)

if (money > 10) 

puts("You should buy some gas.\n");

buy_gas(money);

if (money == 0)

puts("Sorry. Better stay at home.\n")

Does the 
program work 
as intended?



Recap: version of if-else - switch

char  grade = 'D';

switch (grade) {

case 'F' :

printf("Better try again.\n" );

case 'D' :

printf("You passed.\n" );

case 'C' :

case 'B' :

printf("Well done.\n" );

case 'A' :

printf("Excellent!\n" );

default :

printf("Invalid grade\n" );

}

Does the program 
work as intended? 

What is printed 
here?



Recap: loops – while vs. do while

while (instructor_is_sick) {

skip_class();

}

do {

skip_class();

} while (instructor_is_sick); 

What is the difference?



Recap: break

while (feeling_hungry) {

eat_cake();

if (feeling_queasy) {

/* Break out of the while loop */

break;

}

}

Stop eating cake even if 
still feeling_hungry



Recap: continue

while (feeling_hungry) {

if (not_lunch_yet) {

/* Go back to the loop condition */

continue;

}

eat_cake();

}



The story of breaks

• Breaks don’t break if statements!

• AT&T crash 1990:

• A developer used break to break out of if statement.  

• Result: the program skipped the entire section of code 
and interrupted phone services of 70 million people for 
over 9 hours



PRINTF family

• printf
• Prints formatted output to standard output

• fprintf
• Prints formatted output to a file

• sprintf
• Prints formatted output to a string



printf

char * name = “Bob”;

int age = 5;

printf (“My name is %s, I am %d years old”, name, age);

Prints constant 
parts unchanged

Substitutes variable parts 
with values in variables 

name and age

My name is Bob, I am 5 years old



fprintf

FILE * outputFP = open_file_for_writing (file_name);

fprintf (outputFP, 

“My name is %s, I am %d years old”, 

name, age);

My name is Bob, I am 5 years old

In file <file_name>



sprintf

char full_name [80];

char * fname =“Ben”;

char *lname = “Cook”;

sprintf (full_name, “%s %s”, fname, lname);

printf (“Full name is %s”, full_name);

Substitutes variable parts 
with values in variables 

fname and lname

Full name is Ben Cook



sprintf: the C way to concatenate 
strings and numbers

char file_name [80];

char * file_prefix =“Output”;

int file_number= 1;

sprintf (file_name, “%s_%d”, file_prefix, file_number);

printf (“%s”, file_name);

Output_1



SCANF family

• scanf
• Scans standard input and fills values of variables

• fscanf
• Scans formatted file and fills values of variables

• sscanf
• Scans formatted string and extracts from it values to fill 

variables



Changing value of a function 
argument inside the function
void go_south_east (int lat, int lon) {

lat = lat -1;

lon = lon +1;

}

int lat = 35;

int lon = -65;

go_south_east (lat, lon);

printf (“Avast! Now at %d, %d”, lat, long); 

What is printed?



Pass an address of a variable to 
change its value inside function
void go_south_east (int* lat, int* lon) {

*lat = *lat -1;

*lon = *lon +1;

}

int lat = 35;

int lon = -65;

go_south_east (&lat, &lon);

printf (“Avast! Now at %d, %d”, lat, long); 

What is printed now?



scanf

int age;

char *name;

printf (“Enter your name and age separated by comma: ”);

scanf (“%s,%d”, name, &age);

Comma is a constant -
it is matched to the 
comma in the input

We pass an address of 
age to change its value 

inside scanf

We pass an array name 
unchanged because it 

represents memory location of 
the beginning of the array



scanf returns

the number of items assigned into variables 

Since assignment into variables stops when we have an invalid 
input for a certain format specifier, this can tell you if you've 
input all your data correctly:

int res = scanf (“%s,%d”, name, &age);

If input is correct, then res = 2



Story of char limits

char food[5];

printf("Enter favorite food: ");

scanf("%s", food);

printf("Favorite food: %s\n", food);

> ./food
Enter favorite food: liver-tangerine-raccoon-toffee
Favorite food: liver-tangerine-raccoon-toffee
Segmentation fault: 11
>



Setting limits to char arrays

• Carefully put a limit on the number of characters that 
scanf() will read into a string. The rest will be ignored

char food[5];  // filled with:  {‘ø’, ‘ø’, ‘ø’, ‘ø’, ‘ø’}

printf("Enter favorite food: ");

scanf("%4s", food);

printf("Favorite food: %s\n", food);

scanf("%39s", name);

scanf("%2s", card_name);



scanf scans strings until the first 
whitespace
%s

• Stops on the first whitespace character reached, or at the 
specified field width (e.g. "%10s"), whichever comes first

• To read strings with whitespaces we need to use:

%[

• It allows you to specify a set of valid characters

• Conversion stops when a character that is not in the set is 
matched



%[ modifier examples

%[0-9] 

• match all numbers zero through nine. Stop when anything else is 
matched

%[AD-G34] 

• match A, D through G, 3, or 4

%[^A-C]

• match all characters that are NOT A through C

% [^\n] 

• match all the characters until the end of the line

%79[^\n] 

• match at most 79 characters or until the end of the line 
whichever comes first



Enough knowledge for A 1


